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ABSTRACT

Observations show that solar activity is distributed nonaxisymmetrically, concentrating at ‘‘preferred longi-
tudes.’’ This indicates the important role of nonaxisymmetric magnetic fields in the origin of solar activity. We
investigate the generation of the nonaxisymmetric fields and their coupling with the axisymmetric solar magnetic
field. Our kinematic generation (dynamo) model operating in a sphere includes a model of solar differential
rotation, as obtained by inversion of helioseismic data, modeled distributions of the turbulent resistivity, non-
axisymmetric mean helicity, and meridional circulation in the convection zone. We find that (1) the non-
axisymmetric modes are localized near the base of the convection zone, where the formation of active regions
starts, and at latitudes around 30

�
; (2) the coupling of nonaxisymmetric and axisymmetric modes causes the

nonaxisymmetric mode to follow the solar cycle; the phase relations between the modes are found; and (3) the
rate of rotation of the first nonaxisymmetric mode is close to that determined in interplanetary space.

Subject headings: MHD — Sun: magnetic fields

1. INTRODUCTION

Solar magnetic activity tends to cluster at ‘‘preferred lon-
gitudes’’ (Vitinskij 1969; Bogart 1982; Bai 1987; Antonucci,
Hoeksema, & Scherrer 1990; Benevolenskaya et al. 1999;
de Toma, White, & Harvey 2000). Spacecraft data collected
over three solar cycles indicate a persistent dependence of the
solar wind speed and the radial component of the interplane-
tary magnetic field on solar longitude. Patterns are found to be
rotating with a fixed period (Neugebauer et al. 2000). This
indicates the involvement of nonaxisymmetric (i.e., longitude-
dependent) large-scale magnetic fields in the formation and
evolution of solar activity as seen in solar magnetograms
(Ruzmaikin et al. 2001; Henney & Harvey 2002).

The direct expansion of observed solar magnetograms
into spherical harmonics shows the presence of axisymmet-
ric (longitude-independent) and nonaxisymmetric modes
(Altschuler et al. 1974; de Toma et al. 2000). The axisymmetric
mode dominates at solar minimum and the first nonaxi-
symmetric mode is prevalent at solar maximum (Ruzmaikin
et al. 2001). Earlier studies (Stix 1974; Krause & Rädler
1980; Ivanova & Ruzmaikin 1985) have shown that non-
axisymmetric modes could be generated by the mean field
dynamo under certain constraints imposed on the distribu-
tions of the differential rotation and the mean kinetic helicity
(� -effect). These earlier studies did not include the correct
distribution, in radius and latitude, of the solar differential
rotation curve, which was unknown at the time. A more recent
model by Moss (1999), which includes the updated rotation
curve, also displays the generation of a nonaxisymmetric
component of the field.

The nonaxisymmetric magnetic fields are generated by
axisymmetric sources but, in kinematic mean field dynamos,
evolve independently of the axisymmetric field. In particular,
the nonaxisymmetric modes do not have the same period as
the axisymmetric mode. However, the observation that in the
Sun the nonaxisymmetric fields do have the same solar cycle
as the axisymmetric fields suggests a coupling between the
modes that locks the oscillation periods of the two together.

Here we prove that this is in fact possible and that it can be
achieved by relaxing the assumption of axisymmetry for the
� -effect.
The coupling of different modes by nonaxisymmetric

motions was first studied for the Earth’s magnetic fields by
Bullard & Gellman (1954). Nonaxisymmetry is a key ingre-
dient in models of tachocline solar flux tube dynamics that
studied the instabilities leading to the rise of the flux tubes
(Choudhuri 1989; Fan, Fisher, & Deluca 1993; Ferriz-Mas &
Schüssler 1994; Caligari, Moreno-Insertis, & Schüssler 1995;
Caligari, Schüssler, & Moreno-Insertis 1998). In these mod-
els, the formation of magnetic loops emerging at the solar
surface as active regions is considered to be a consequence
of these nonaxisymmetric (kink-type) instabilities. Although
the dynamo itself is not treated in these studies, longitu-
dinal instabilities are connected to the emergence of active
regions (see also Ruzmaikin 2001). A calculation of the
� -effect from these instabilities has been performed by Ferriz-
Mas, Schmitt, & Schüssler (1994). Such an � -effect, how-
ever, has not yet been included in mean field dynamo
models. Kinetic helicity in hydrodynamic simulations of
shallow water instabilities used in models of the tachocline
also reveals a nonaxisymmetric, m ¼ 1, pattern for the
� -effect (Dikpati & Gilman 2001). That is not included,
however, in the dynamo model that the same authors have
analyzed. A nonaxisymmetric � -effect has been considered in
mean field dynamo models of the galactic dynamo (Moss,
Brandenburg, & Tuominen 1991).
Here, for the first time, we study the solar mean field

dynamo with a nonaxisymmetric � -effect. We discuss the
radial-latitudinal distribution of the first nonaxisymmetric
mode and relate it to the preferred longitudes and clustering
of magnetic activity. It is important to note that, unlike the
axisymmetric fields, the nonaxisymmetric modes are rotating
structures in the frame of reference of the body. The rate of
rotation of these modes is determined by the solution of the
dynamo equations. We determine the rate for the m ¼ 1 mode
by looking at the evolution of the surface patterns of its radial
magnetic field. Because the surface poloidal field expands into
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the solar wind, we relate this rate to the signatures of preferred
longitudes found in the solar wind. Our kinematic model
includes an approximation to the helioseismically observed
distribution of the differential rotation and modeled dis-
tributions of other sources of the mean field generation.

2. THE NONAXISYMMETRIC DYNAMO MODEL

When the plasma motions are given, the generation of the
mean magnetic field is described by the equations

@tB ¼ : ;;;;;;;;; u ;;;;;;;;; Bþ �B� �Bð Þ; ð1Þ

:=B ¼ 0 ð2Þ

(Moffat 1978; Parker 1979; Krause & Rädler 1980), where
B is the mean magnetic field (the first statistical moment of
the total field), u is the mean velocity, � is the mean helicity,
and � is the electrical resistivity, which includes the turbulent
resistivity.

Solar rotation is approximated by a simple analytical fit
(Charbonneau et al. 1999; Moss 1999) to the distribution
reconstructed by helioseismic methods (Kosovichev 1996;
Howe et al. 2000; see also Fig. 1). Details are given in the
Appendix. The rate of the equatorial rotation is taken as

�eq=2� ¼ 460:7 nHz ¼ 4:607 ; 10�9 s�1:

This distribution matches the core rotation �c smoothly in a
layer of thickness 0.04 R� at 0.69 R�. The core rotation is
about equal to the surface rotation �s at 30

�
latitude. The

surface shear layer is not included in this model. However,
the deep shear layer at 0.7 R�, i.e., the tachocline, is well
approximated.

The distribution of � cannot yet be determined from
observations. We therefore consider three typical cases (see
Appendix). The radial profiles are shown in Figure 2. In the
first case, M1, the distribution of � is independent of radius in
the convection zone and rapidly decreases below the con-
vection zone. In the second case, M2, � is concentrated near
the solar surface and does not overlap with the shear layer. In

the third case, M3, � is localized above the tachocline
(Charbonneau & MacGregor 1997; Mason, Hughes, & Tobias
2002), overlapping the radial shear. The latitudinal depen-
dence of � in all three cases is assumed to be cos �. This
simple angular dependence is partially justified by the fact
that the pseudoscalar � can be formed from the scalar product
of the density gradient and rotation: � � :� =6 � cos �.
More elaborate angular dependences are produced by differ-
ent models of � (see, e.g., Ruediger & Brandenburg 1995;
Dikpati & Gilman 2001) and can easily be incorporated into
our model.

The resistivity � is taken to be constant throughout the
convection zone, with a sharp decrease in the transition layer
to the highly conductive radiative interior. We consider the
case when the transition layer is coincident with the rotational
shear layer. For computational needs, we assume that the re-
sistivity near the base of the convection zone is 50–200 times
less than the turbulent resistivity in the bulk of the convection
zone. (A realistic number would be of the order of 106.) We
use R2

�=� as the time unit. We assign the value of the resis-
tivity � by considering the marginal solution of model M1.
We match the equatorial rotation rate in Figure 1 to the
observed one, obtaining �0 ¼ 2:74 ; 1011 cm2 s�1. Estimates
made using classical mixing length theory give a value for
the resistivity of order 1012 cm2 s�1.

The ratio Tc=Trot of the cycle period to the rotation rate of
the body is dimensionless and therefore does not depend on
the choice of �. For the Sun, the ratio of the cycle period to
the equatorial rotation rate is approximately 150. Higher
values of this number imply a cycle period of the solutions
longer than the solar one. Lower values imply a shorter cycle
period. We characterize the cycle periods of our solution in
terms of this dimensionless ratio.

In the case of a nonaxisymmetric dynamo, an analo-
gous ratio of the rate of rotation of the nonaxisymmetric
mode to the body rotation rate could also be used to char-
acterize the solutions. Such a number clearly does not exist
in the case of the axisymmetric dynamo where no rotating
structures exist.

Fig. 1.—Distribution of the internal solar rotation used in our dynamo
modeling. Dashed lines show the rotation rates of the nonaxisymmetric mode
(see Table 1). The upper dashed line at 442 nHz, just above the core rotation
rate, is for models M1 and M3. The lower dashed line, at 433 nHz, is for
model M2.

Fig. 2.—Radial distributions of the sources of magnetic field generation:
� for three different models, the radial gradient of the rotation rate at the
equator, and the turbulent diffusivity �. Values are not to scale; for actual
values see Appendix.
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2.1. Mathematical Formulation and Numerical Procedure

We have developed a new code that solves the kine-
matic dynamo equations (1) and (2) in a spherical domain. We
define a regular grid in the meridional circular sector
r2½rin; R��; �2½0; ��, where � is the colatitude. In the azi-
muthal direction, �, we expand all functions in m-modes,
eim�. Solving the equations in real space has advantages
over using the spectral Legendre transform. The m-modal
transform can be numerically performed in a very efficient
way by means of the fast Fourier transform algorithm. No
such algorithm exists for the Legendre transform, which is
needed for the latitudinal direction �. This makes spherical
spectral codes numerically expensive to run. It is also easier to
parallelize a code in a regular domain.

We represent the divergence-free magnetic field by two
scalar functions T and S called the toroidal and poloidal
potentials

B ¼ �r ;;;;;;;;; :T|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
toroidal

þ: ;;;;;;;;; (� r ;;;;;;;;; :S)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
poloidal

ð3Þ

(Moffat 1978; Krause & Rädler 1980). This representation
ensures that the field is divergence-free. The curl of a poloidal
field is a toroidal field and vice versa.

The choice of T and S is made unique by means of the
gauge condition

Z
�

T sin � d� d� ¼ 0;

Z
�

S sin � d� d� ¼ 0: ð4Þ

When the field vanishes, B ¼ 0, its toroidal and poloidal
components Bt and Bp vanish as well. The vector equation (1)
therefore reduces to two coupled equations for the toroidal and
poloidal potentials.

When � ¼ � (r; �) and � ¼ �(r), the governing equa-
tion (1), in spherical coordinates r, �, �, reduces to

@tT ¼ R�V� þ R�V� þ RMVM

þ �92T þ @r�
1

r
@r(rT );

@tS ¼ R�U� þ R�U� þ RMUM

þ �92S ð5Þ

with the gauge conditions (4). The dimensionless numbers
R�, R� , and RM are defined as

R� ¼
�0R

2
�

�0
; R� ¼ �0R�

�0
; RM ¼ uMR�

�0
: ð6Þ

Subscripted quantities indicate typical amplitudes. The
functions U�, V�, U� , V� , UM , and VM are related to the
toroidal and poloidal parts of the sources:

(6 ;;;;;;;;; r) ;;;;;;;;; B½ �T ¼ �r ;;;;;;;;; 9U�; ð7Þ
: ;;;;;;;;; (6 ;;;;;;;;; r) ;;;;;;;;; B½ �P ¼ �r ;;;;;;;;; 9V�; ð8Þ

uM ;;;;;;;;; Bð ÞT ¼ �r ;;;;;;;;; 9UM ; ð9Þ
: ;;;;;;;;; uM ;;;;;;;;; Bð ÞP ¼ �r ;;;;;;;;; 9VM ; ð10Þ

�Bð ÞT ¼ �r ;;;;;;;;; 9U� ; ð11Þ
: ;;;;;;;;; �Bð ÞP ¼ �r ;;;;;;;;; 9V� : ð12Þ

We have split the velocity field u into its rotational (toroidal)
and meridional (poloidal) components

u(r; �) ¼ 6(r; �) ;;;;;;;;; rþ uM (r; �): ð13Þ

The functions U�, V�, U� , V� , UM , and VM can be calcu-
lated from the relations

�L2V� ¼ r =: ;;;;;;;;; : ;;;;;;;;; 6 ;;;;;;;;; rð Þ ;;;;;;;;; B½ �; ð14Þ
�L2U� ¼ r =: ;;;;;;;;; (6 ;;;;;;;;; r) ;;;;;;;;; B½ �; ð15Þ
�L2VM ¼ r =: ;;;;;;;;; : ;;;;;;;;; uM ;;;;;;;;; Bð Þ; ð16Þ
�L2UM ¼ r = : ;;;;;;;;; (uM ;;;;;;;;; B); ð17Þ

�L2V� ¼ r = : ;;;;;;;;; : ;;;;;;;;; � (r; �)B½ �; ð18Þ
�L2U� ¼ r =: ;;;;;;;;; � (r; �)B½ �; ð19Þ

where

L2 ¼ 1

sin �

@

@�
sin �

@

@�

� �
þ 1

sin2�

@2

@�2
ð20Þ

is the angular part of the Laplacian operator

92 ¼ 1

r2
@

@r
r2

@

@r
þ 1

r2
L2: ð21Þ

The inversions in equations (14)–(19) can be efficiently
carried out numerically.

2.2. The m-Modal Expansion

We expand all functions T, S, V, and U in equations (5) into
the m-modes

T (r; �; �) ¼
XN
m¼0

Tm(r; �)eim� þ cc; ð22Þ

where cc means a complex conjugate, Tm(r; �) are complex
functions, and N is the maximum order of the expansion.
When the sources (u, � , and �) are axisymmetric, i.e., do not
depend on the azimuth �, equations (5) decouple into a set of
2(N þ 1) equations

@tT
m ¼ R�V

m
� þ R�V

m
� þ RMV

m
M

þ �92
mT

m
� þ @r�(r)

1

r
@r rTmð Þ;

@tS
m ¼ R�U

m þ R�U
m
� þ RMU

m
M

þ �92
mS

m; ð23Þ

where 92
m is the Laplacian operator (21) in which @2=@2� is

replaced by �m2. Each of the m-modes can therefore be found
from an independent set of equations. The functions Um,
Vm,Um

� , V
m
� , U

m
M , and Vm

M are solutions of the m-transformed
equations (14)–(19), such as

�L2
� �m

Um
� (r; �)eim�

¼ r =: ;;;;;;;;;½ �m�Bm(r; �)eim�; ð24Þ

�L2
� �m

Vm
� (r; �)eim�

¼ r =: ;;;;;;;;; : ;;;;;;;;;½ �m�Bm(r; �)eim�; ð25Þ

for the potentials Um
� and Vm

� . Analogous expressions can
be found for the other potentials in equations (14)–(19).
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The operators ½r = : ;;;;;;;;; �m, ½r =: ;;;;;;;;; : ;;;;;;;;; �m, and ½�L2�m are the m-
transformed operators, where the derivatives with respect to �
become multiplications by the complex factor im.

We solve equations (23) numerically. At each time step,
we solve equations (24) and (25) and the corresponding
equations for the u ;;;;;;;;; B term for the auxiliary potentials Vm

� ,
Um

� , V
m
M , U

m
M , U

m
� , and Vm

� . Equations (23) are then advanced
in time with a third-order Runge-Kutta method. Spatial
derivatives are second-order accurate in a regular ½r; �� mesh.
The models below have the resolution of 80 ; 160 mesh
points.

2.3. Coupling of the Modes

When the assumption of axisymmetry for � is relaxed, the
set of dynamo equations (23) for each m are no longer inde-
pendent. But it is still possible to use equations (24) and (25)
where the product �Bm is replaced by the convolution

(�B)m ¼
X1
j¼�1

� jBm�j(r; �): ð26Þ

The coefficients with negative indices are equivalent to the
complex conjugate of the coefficient with the positive indices.

We investigate in detail the simplest situation of coupling of
m ¼ 0 and 1 modes, retaining only the lowest m ¼ 0 and 1
terms in the expansion (26). The contribution to the m ¼ 1
mode thus becomes

(�B)1 ¼ �0B1 þ ��1B0: ð27Þ

The nonaxisymmetric part of � (�1) thus introduces a linear
coupling between the m ¼ 1 and the m ¼ 0 modes. The
amplitude of the resulting nonaxisymmetric field depends
on the value of �. In the results displayed below, � ¼ 1 is used
in model M1 and � ¼ 0:2 in models M2 and M3. For an
�� dynamo, when R� 3R� , equation (27) means that
the poloidal m ¼ 1 component of the field is driven by the
toroidal m ¼ 0 component. The toroidal m ¼ 0 and 1 modes
are related, respectively, to the poloidal m ¼ 0 and 1 modes
by differential rotation.

2.4. Boundary Conditions

The conditions on the rotation axis � ¼ 0 are different for
different values of m. For even m, any function maps into itself
when � ! �þ �, and therefore on the axis the derivative in
the �-direction perpendicular to the axis must vanish. For odd
m, every function subjected to this mapping is multiplied by
�1 and therefore must vanish on the axis (� ¼ 0) to satisfy
continuity. Hence,

@S

@�
¼ @T

@�
¼ 0; m ¼ 0; ð28Þ

S ¼ T ¼ 0; m ¼ 1: ð29Þ

We consider a spherical shell rin < R� < 1 with internal
radius rin ¼ 0:4 R�, where we define our potentials S and T to
be zero. The physical boundary between the core and the
convection zone is identified by the sharp change in electrical
resistivity at 0.69 R�. The computational domain extends
further down to 0.4 R�. We allow enough time for the diffu-
sion and differential rotation to expel the flux from the low-
conductivity region.

On the outer boundary, r ¼ R, we adopt the potential (vac-
uum) field conditions

T ¼ 0;
@Sml
@r

þ (l þ 1)

R
Sml ¼ 0; ð30Þ

where Sml are the coefficients of the decomposition into
spherical harmonics of degree l and order m of the scalar
potential S at the surface. For the numerical scheme, which is
second-order in the r-direction, we only need to solve this
equation at two r-layers next to the boundary.

2.5. Meridional Circulation

Meridional circulation has long been observed on the
surface of the Sun with a variety of techniques from sunspot
tracking (Tuominen 1941) to Doppler and helioseismic
measures (Labonte & Howard 1982; Hathaway et al. 1996;
Haber et al. 2002). The patterns correspond to a single-cell
large-scale flow proceeding from the equator to the pole with
an amplitude at the surface of about 20 m s�1. Recent mea-
surements indicate, however, that the flow might in fact have a
more complex nature, even reversing at times and showing a
nontrivial vertical structure (Haber et al. 2002).

With current techniques, the upper 15% of the solar surface
can be probed (Braun & Fan 1998). The return flow is
not observed, although some progress has been made in
this direction (Giles et al. 1997). In particular, the depth into
the convection zone to which it penetrates is not known.
Hathaway et al. (2003) examine the drift of the centroid of the
sunspot area toward the equator in each hemisphere from 1874
to 2002 and find that these observations are consistent with a
meridional counterflow deep within the Sun as the primary
driver of the migration toward the equator and the period
associated with the sunspot cycle.

In the context of an axisymmetric dynamo, meridional
circulation has been extensively studied (Roberts & Stix 1972;
Wang, Sheeley, & Nash 1991; Choudhuri, Schüssler, &
Dikpati 1995; Durney 1995; Dikpati & Gilman 2001; Nandy
& Choudhuri 2002). For the magnetic fields to be effectively
transported by such a small amplitude flow, the electrical
resistivity has to be low, a condition that is fulfilled below the
convection zone, where resistivity and turbulence dramatically
decrease. Hence, one can expect that a deep flow sinking
below the convection zone will be more effective in acting
upon the field (Nandy & Choudhuri 2002). However, it has
not been established that such a flow can realistically exist. We
will discuss two models (see Fig. 3).

2.6. Initial Conditions

We select an initial field of antisymmetric (dipolar) sym-
metry with respect to the equator by choosing the following
potentials for m ¼ 0 and 1 modes:

S(t ¼ 0) ¼ S01 ; S1(t ¼ 0) ¼ S12 ;

T (t ¼ 0) ¼ T 0
2 ; T1(t ¼ 0) ¼ T1

1 : ð31Þ

Here, Sml indicates a function proportional to the spherical
harmonic of order l and degree m. No symmetry with respect
to the equator is imposed on the time-dependent solution, and
the whole domain �2½0; �� is therefore included.

The velocity field u in the induction equation (1) is given.
The induction equation is thus linear in the magnetic field
B, and its solutions exponentially grow or decay in time.
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A stationary state is often achieved by introducing a
quenching of the � -effect when the field intensities exceed
some level (for a discussion see, e.g., Blackman & Field
2002). We do not prescribe any quenching mechanism here
because it would introduce a further coupling between modes,
making the interpretation of the results more complex. It
would also add an element of arbitrariness that is not neces-
sary for our purposes. We will therefore be looking at solu-
tions that are close to marginal excitation.

3. RESULTS

We consider first the dynamo without meridional circu-
lation (uM ¼ 0). Table 1 gives the growth rate �, the di-
mensionless cycle period T, and the ratio of the cycle period
to the core rotation period T=Trot, as explained in x 2. The
three models considered are labeled M1, M2, and M3. See
the Appendix for a more detailed description.

3.1. Growth Rates and Cycle Periods

The time evolution of the toroidal field potential for the M1
case is shown in Figure 4. A steady exponential growth is
reached after 1 diffusion time. We follow the run for ap-
proximately 5 diffusion times. However, after t � 1 the solu-
tion already appears to be stable. As seen in Figure 4, the
solution oscillates. Each cycle lasts 179 rotations of the
body being modeled. The ratio of the cycle period to the ro-
tation rate, T=Trot, is independent of the units adopted. This
ratio discriminates between solutions that have a solarlike
period and those that do not. For model M1, the ratio T=Trot
is 179, which is close to the solar case of 149.
Model M3, which is not shown, behaves similarly to model

M1. It has a comparable oscillation period. The � -effect
in these two models have a broad radial distribution within
the convection zone which overlaps with the shear layer (see
Fig. 2).
In contrast, model M2’s behavior is markedly different

than the previous two, especially regarding the oscillation
period T, which is 10 times smaller than in cases M1 and M3.
Its T=Trot of 20.2 shows that M2 does not represent the solar
case correctly. M2 is characterized by an � -effect that has
no overlap with the shear layer, and that is probably the cause
of its failure.

3.2. Phase Relations between the Axisymmetric and
Nonaxisymmetric Modes

In Figure 5 we show the time evolution of the radial and
azimuthal components of the magnetic field during one cycle
in model M3. The axisymmetric dipolar-type field at the pole
reverses its sign when the (total) azimuthal field close to the
tachocline is maximal. In other words, there is a phase shift
of �=2 between these two field components. We evaluate the
toroidal fields at 30� of latitude, where the nonaxisymmetric
field is concentrated. For the plot of the m ¼ 1 component,
which has cos ’ dependence, we select the meridional plane
defined by ’ ¼ 0, where the field is maximum. A similar
relation is observed in the Sun: the axisymmetric dipole
reverses close to the solar maximum. Analogous calculations
for models M1 and M2 yield �=6 and �3�=4, respectively
(see Table 2). We can therefore conclude that the phase
relation between the field components is dependent on the
radial distribution of the � -effect. This can help to select the
models according to the phase relations between the field
components as was originally indicated by Stix (1976).
Another phase relation that can be observed is the one

between the surface axisymmetric and nonaxisymmetric
poloidal fields, which is shown in Figure 6 (Ruzmaikin
et al. 2001). Note that, by definition, the poloidal potentials
have the same phase as the poloidal fields. For the purpose
of determining the phase difference between the modes of
the poloidal fields, we can therefore use the potentials (see
Figs. 7–9).
The time dependence of the m ¼ 0 and 1 poloidal potentials

is shown in Figures 7–9. The phase relations can be read from
the plot and are listed in Table 2.

3.3. Spatial Distribution of the Fields and Localization of the
Nonaxisymmetric Modes

The poloidal field is found to be predominantly antisym-
metric (odd) with respect to the equator (dipolar-type) in all
three models. However, this symmetry is not pure, and a
symmetric component is present as well (see Figs. 10 and 11).

TABLE 1

Time Evolution

Model � T T/Trot

�1

(nHz)

M1.................. 0.35 0.022 179 442

M2.................. 4.15 0.0026 20.2 433

M3.................. 1.4 0.018 137 442

Fig. 3.—Meridional circulation, with flow lines for the two cases consid-
ered. Solid lines indicate the counterclockwise flow and dotted lines the
clockwise flow. The dashed line at 0.69 R� indicates the center of the
tachocline.
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We recall that we do not impose equatorial symmetry con-
ditions on the solution and solve the equations for the whole
domain �2½0; ��. The north-south symmetry is broken be-
cause we couple the axisymmetric mode, which is odd across
the equator (like a polar dipole), with the nonaxisymmetric
mode, which is even across the equator (like an equatorial
dipole). This north-south asymmetry does not disagree with

observations. Figure 12 shows the time evolution of the
signed azimuthal magnetic field for the m ¼ 1 mode on the
meridional plane � ¼ 0 during half of a cycle. In contrast to
the axisymmetric mode, the nonaxisymmetric field is highly
concentrated in the lower part of the tachocline and, to a
lesser extent, near the surface. It is also localized around 30�

latitude (see also Table 3).
In order to show the robustness of the spatial intensity

distribution of the fields throughout a cycle, we display the
distribution of the absolute values of the axisymmetric
(m ¼ 0) and nonaxisymmetric (m ¼ 1) toroidal fields inside the
convection zone, integrated over a solar cycle (Figs. 13–
15). In Table 3 we show the locations of the maxima of
the toroidal m ¼ 0 and 1 components, r0M , �

0
M , r

1
M and �1M .

Note that the m ¼ 1 mode for all models and the m ¼ 0 mode
for model 3 have two radial maxima.

The physical reason for these localizations can be under-
stood. As is well known from MHD theory (Moffat 1978;
Krause & Rädler 1980), differential rotation affects axisym-
metric and nonaxisymmetric fields in different ways. Thus, an
axisymmetric poloidal field in a differentially rotating region
is converted into an axisymmetric toroidal field. But a non-
axisymmetric field is rapidly (within a few rotations) excluded
from the strongly differentially rotating high-resistivity region.

Fig. 5.—Phase relation between the magnetic field components in
model M3. The time evolution during a cycle of magnetic field components
is plotted. The solid line shows the intensity of the azimuthal component of
the total magnetic field, B

0
’ þ B

1
’, in the meridional plane ’ ¼ 0 calculated at

the tachocline, r ¼ 0:69 R�, at 30
� latitude. The dot-dashed line shows the

intensity of the surface radial field component B0
r close to the north pole, at

80� latitude. The phase shift between the fields is �=2. Amplitudes of both
toroidal and radial fields are normalized to unity for convenience.

Fig. 4.—Long-term time evolution of the amplitude of the toroidal field potentials for model M1. The top panel is T0 and the lower panel is T1. The diffusion time
is taken as the time unit.

TABLE 2

Phase Relations

Model �’ (B’!Br) �’ (S0!S1)

M1.................................... �/6 1.1�

M2.................................... �3�/4 1.4�
M3.................................... �/2 1.1�
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This happens because the rotation tends to twist the field lines
perpendicular to the axis of rotation in such a way that any
two adjacent lines have an opposite direction. This leads to
effective reconnection of these field lines, excluding the field
from the differentially rotating region even in the case of a
very small electrical resistivity. Hence, differential rotation is a
mechanism that tends to destroy any deviation from axial

symmetry. In the solar convection zone, the field survives only
in the regions where the differential rotation is weak (around
30�) and where the resistivity is small, i.e., in the lower part of
the tachocline.
The localization of the nonaxisymmetric magnetic field

suggests a simple explanation of why active regions emerg-
ing on the solar surface have a tendency to cluster at pre-
ferred longitudes. Active regions such as sunspots are the
result of the buoyancy of bipolar magnetic loops (flux ropes)
through the solar surface (Parker 1979). The flux ropes
formed at the base of the convection zone emerge when their
magnetic field exceeds the threshold for buoyancy. A non-
axisymmetric enhancement of the underlying magnetic
field at that location results in the clustering of active
regions, as is shown in a heuristic model (Ruzmaikin 1998,
2001). The m ¼ 1 mode of the toroidal magnetic field
superposed on the axisymmetric mode produces a localized
field maximum (‘‘hump’’) near the maximum of sin �.
The humps produced by nonaxisymmetric fields are unstable
when their field strength reaches 4 ; 104 G (Caligari et al.
1995, 1998). Because the growth of the underlying non-
axisymmetric mode is affected by the continuous stretching
due to differential rotation, the mode is destroyed after
some time. The stretching timescale of several months is
in agreement with the observed lifetime of the clusters
(Gaizauskas et al. 1983).

3.4. Rotation Rate and Preferred Longitudes

As we mentioned in x 1, a persistent, periodic magnetic
pattern with a fixed rotation rate has been observed in the solar

Fig. 6.—Observed phase relations between the poloidal components of the
axisymmetric (dashed line) and nonaxisymmetric (solid line) magnetic field
(Ruzmaikin et al. 2001).

Fig. 7.—Phase relations between the poloidal and toroidal components of the axisymmetric and nonaxisymmetric magnetic fields for model M1. The integrated
square moduli of the scalar potentials S and T over the whole domain are plotted versus time. Values are not to scale. Here T0 and S0 are the toroidal and poloidal
potentials for the m ¼ 0 mode, and T1 and S1 are the toroidal and poloidal potentials for the m ¼ 1 mode. The S1 mode is coupled to the T0 mode (see eq. [27]). The
observed phase relations for the Sun’s field components are shown in Fig. 6 for comparison.

BIGAZZI & RUZMAIKIN950



Fig. 9.—Same as in Fig. 7, but for model M3

Fig. 8.—Same as in Fig. 7, but for model M2



wind (Neugebauer et al. 2000). A period consistent with
this rate was also found from the surface fields (Ruzmaikin
et al. 2001; Henney & Harvey 2002). If preferred longi-
tudes are associated with the nonaxisymmetric modes of
the dynamo, then the observed pattern would originate in
the poloidal nonaxisymmetric component of the field.

The longitudinal distribution of the nonaxisymmetric
modes of the dynamo has the form of a wave propagating
along the azimuth, �, with a rate determined by the solution
of the dynamo equations. We determine that rate, �1, by

following the time evolution of the surface poloidal (radial)
m ¼ 1 mode (see Fig. 16). The results are given in Table 1 for
the three models considered. We represent these rates as
horizontal dashed lines, along with the radial distribution of
the rotation rate, in Figure 1.
The rotation rate of the nonaxisymmetric m ¼ 1 mode

is comparable to that of the surface rotation at 30� latitude
for the M1 and M3 models. This is also the rotation rate
of the core. For the M2 model, a slower rate is found.
Recent Ulysses observations of the surface magnetic fields

Fig. 11.—Butterfly diagram for the m ¼ 0 (dot-dashed contours) and m ¼ 1 (solid contours) modes of the toroidal magnetic field at two different depths: above
the shear layer at 0.74 R� (left), and in the convection zone at 0.85 R� (right). Model M1 is displayed here. The diagram shows the latitudinal distribution of the
modulus of the toroidal magnetic field as a function of time during five half-cycles. The time is measured in units of the diffusion time.

Fig. 10.—Distribution of the axisymmetric (m ¼ 0) poloidal field over half a cycle. Time proceeds from left to right and from top to bottom, and the panels are
equally spaced in time. Poloidal field lines are shown. Solid lines have a counterclockwise direction, and dotted lines have the opposite direction (model M1).
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during its fast scan around solar maximum show a rota-
tion rate of the nonaxisymmetric dipole of the Sun that is
close to the core rotation rate (see Jones, Balogh, & Smith
2003).

3.5. Meridional Circulation

The main goal of this paper is to study the excitation of
the nonaxisymmetric mode under otherwise simple con-
ditions. For this reason, we did not include the meridional
circulation in the models described above. Meridional cir-
culation may play an important role in the overall dynamo
as indicated by other studies (Roberts & Stix 1972; Wang
et al. 1991; Choudhuri et al. 1995; Durney 1995; Dikpati &
Gilman 2001; Nandy & Choudhuri 2002). Here we report
only on a preliminary analysis of two simple cases of merid-

ional circulation for the M1 distribution of � . The cases
are: (1) shallow and (2) deep meridional circulation (see
Fig. 3 and Appendix). In order to make the meridional
transport more effective compared to diffusion in these cal-
culations, we decrease the ratio of the core resistivity to the
resistivity in the convection zone to 1=200.

Fig. 12.—Distribution of the nonaxisymmetric (m ¼ 1) toroidal field through half a cycle, until the field has changed its polarity. Model M1 is displayed here. The
contour plots show the intensity of the azimuthal component of the nonaxisymmetric field, B1

’. The dashed line marks the center of the tachocline, r ¼ 0:69 R�,
which is also the location of the turbulent resistivity drop.

TABLE 3

Location of Magnetic Field Maxima

Model r0M �0M (lat) r1M �1M (lat)

M1............. 0.70 57 0.67, 0.93 30, 33

M2............. 0.95 50 0.90, 0.97 42, 41

M3............. 0.72, 0.90 60, 52 0.78, 0.93 32, 32
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The resulting field distributions for these two cases are
displayed in Figures 17 and 18. Comparing these distributions
to the case without meridional circulation (Fig. 13), we see
that the field tends to be depleted in the upper part of the
convection zone and intensified and stretched in the tacho-
cline. This is especially true for the case with deep meridional
circulation.

The field is pushed out of the convection zone into
the tachocline, apparently under the action of the radial

component of the circulation. The flow, however, does
not seem to be effective enough in the latitudinal direction
to significantly change the toroidal field distribution, al-
though there is a shift of its maximum below the 30� line
(see Table 4).
A more significant change occurs in the cycle period of

the solutions, which nearly doubles with a change in am-
plitude of the flow from juM j ¼ 5 to 0. Moreover, with
juM j > 5, the symmetry of the solution changes from dipolar

Fig. 14.—Same as in Fig. 13, but for model M2

Fig. 13.—Distribution of the axisymmetric (m ¼ 0) and nonaxisymmetric (m ¼ 1) toroidal fields inside the convection zone in model M1. The modulus of the
azimuthal component of the magnetic field is shown. Field distribution is integrated over time during a cycle. Contour lines are concentrated in regions where the
field is more intense and resides for longer times. For the m ¼ 1 component, the modulus squared of the field is averaged over the azimuthal direction ’. The dot-
dashed line marks the center of the tachocline at r ¼ 0:69 R�, which is also the location of the turbulent resistivity drop.
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(antisymmetric with respect to the equator) to quadrupolar
(symmetric). For juM j ¼ 10 a steady nonoscillatory solution
takes over.

4. DISCUSSION

Solar observations have shown the importance of the non-
axisymmetric component of the mean magnetic fields in the

formation and evolution of solar activity. Solar dynamo
models have so far failed to address the nonaxisymmetric
features of the solar cycle, most notably the clustering of
magnetic activity and preferred longitudes.

We have developed a new kinematic nonaxisym-
metric mean-field dynamo model of the Sun in spherical ge-
ometry that incorporates the solar rotation as reconstructed

Fig. 16.—Left: Near-surface distribution of the radial component of the nonaxisymmetric magnetic field at fixed time. White indicates outwardly directed field,
and black is inward. Right: Amplitude of the radial field versus longitude at the latitudinal cut indicated by the horizontal line in the left panel. Two curves are
shown, obtained at different times during a cycle. The phase difference between the maxima divided by the time lag between the two profiles returns the rotation rate
of the m ¼ 1 mode.

Fig. 15.—Same as in Fig. 13, but for model M3
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from helioseismic data and a model for the meridional circu-
lation. We decompose the magnetic field into its toroidal and
poloidal components. This geometry allows waves to propa-
gate azimuthally at different rates for different modes, in
contrast to a periodic box in which only one rate can be
allowed. We determine the rotation rate of the first non-
axisymmetric mode.

We have considered, for simplicity, only the lowest azi-
muthal modes, m ¼ 0 and 1. By the action of a non-
axisymmetric � -effect, the modes are coupled together, and
the m ¼ 1 mode shares the same cyclic behavior as the axi-
symmetric mode m ¼ 0.

We have examined three different radial distributions of
the mean helicity (� -effect), two with � operating near the
tachocline and one only near the surface. When the meridional
flow is neglected, we found that all produced a cycle with
alternatingm ¼ 0 and 1 modes. The twomodels with� near the
tachocline both give the ratio T=Trot of the cycle duration to the
rotation rate within 20% of the observed value of 150, whereas
the case where � was concentrated near the surface failed to
give agreement, indicating that this was not a valid solar
model. The radial profile of � strongly influences the phase
relations between the alternating axisymmetric dipole and
the toroidal field intensity at the base of the convection zone.

Fig. 18.—Same as in Fig. 13, but for the model with deep meridional circulation. The flow contours are superposed as triple-dot–dashed lines.

Fig. 17.—Same as in Fig. 13, but for the model with shallow meridional circulation. The flow contours are superposed as triple-dot–dashed lines.
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We determined the rotation rate of the near-surface non-
axisymmetric radial field in the three models. The two
models with � close to the tachocline had the same rate of
rotation, slightly faster than the core rotation rate, in good
agreement with observations. This rate was found to be the
same through several cycles. Again, the model with near-
surface � was different, with a rotation rate slower than the
core rotation.

The spatial distribution of the nonaxisymmetric toroidal
fields was found to be concentrated around 30

�
latitude,

where the radial gradient of the differential rotation vanishes.
(The latitude at which the axisymmetric mode is concen-
trated is higher. However, in axisymmetric dynamos, it is
possible to vary the meridional circulation and a latitudinal
distribution of � to lower the latitudinal distribution of
toroidal fields; Ruediger & Brandenburg 1995; Dikpati &
Gilman 2001.) When � was finite near the tachocline,
the nonaxisymmetric toroidal field had a strong component

there. A near-surface concentration was also found for all
three models.

A preliminary study of meridional circulation indicated
that the overall field distribution is not strongly affected,
particularly for the toroidal nonaxisymmetric component of
the field. A bigger effect was found in the cycle period, which
becomes longer at higher flow intensities, and the equatorial
symmetry of the solutions, which becomes quadrupolar (sym-
metric) when flow intensity is very high. In a forthcoming
study we will investigate the role of meridional circulation in
the nonaxisymmetric dynamo in more detail.
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was conducted in part at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautic and Space Administration. This work
was performed while A. Bigazzi held a National Research
Council Research Associateship Award at the Jet Propulsion
Laboratory.

APPENDIX

DESCRIPTION OF SOURCES

A1. ROTATION

The differential rotation is approximated by

�(r; �) ¼ �0

�30

�
�30(1� f (r))þ �s f (r)

�
; f (r) ¼ 1

2

�
1þ tanh

r � r�

	�

� ��
: ðA1Þ

The parameters r� ¼ 0:69 and 	� ¼ 0:05 define the location and the width of the tachocline. Here, �s is the surface rotation
profile,

�s(�) ¼ 1þ a1 cos
2�þ a2 cos

4�; ðA2Þ

with a1 ¼ �0:126 and a2 ¼ �0:159, and � is the colatitude (Moss 1999; Charbonneau et al. 1999). The equatorial rotation rate is
thus given by

�eq ¼
�0

�30

; ðA3Þ

where �30 ¼ �s(30
�). In all runs we use �0 ¼ 4:9 ; 104 in dimensionless units.

A2. DIFFUSIVITY

The turbulent diffusivity profile is given by

�(r) ¼ �c(1� f (r))þ �0 f (r); f (r) ¼ 1

2

�
1þ tanh

r � r�

	�

� ��
: ðA4Þ

Here, r� � r� ¼ 0:69 and 	� ¼ 0:04; �c and �0 are the diffusivity values in the core and in the convection zone, respectively. We
use �0=�c ¼ 50 and �0=�c ¼ 200.

TABLE 4

Location of Magnetic Field Maxima

Model r0M �0M (lat) r1M �1M (lat)

M1S................ 0.80 55 0.67, 0.90 31, 34

M1D ............... 0.65 59 0.65, 0.87 30, 35
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A3. � -EFFECT

The radial dependences of the � -eAect for the three cases considered are

� (r) ¼ �0

1

2
1þ tanh

r � r�

	�

� �
ðA5Þ

with �0 ¼ 0:9, r� ¼ 0:7, and 	� ¼ 0:03 in model M1 and �0 ¼ 24:2, r� ¼ 0:9, and 	� ¼ 0:03 in model M2; for model M3,

� (r) ¼ �0

1

2
1þ tanh

r � r�

	�

� �
1

2
1� tanh

r � r� þ 0:07

	�

� �
ðA6Þ

with �0 ¼ 1:9, r� ¼ 0:75, and 	� ¼ 0:04. The values of �0 have been chosen so that the dynamo is supercritical but close to
marginal.

A4. MERIDIONAL CIRCULATION

We consider a simple two-cell Cow where the surface Cow amplitude is of the order of that observed. Density stratiBcation in the
convection zone is very high; therefore mass continuity has to be taken into account. We specify a simple fit to reproduce the
density from a solar model (Christensen-Dalsgaard et al. 1996), between 0.60 R� and 0.95 R�,

� ¼ �e�
r ðA7Þ

where � ¼ 247 and 
 ¼ 10:1. We impose mass continuity

:�u ¼ 0 ðA8Þ

by introducing a poloidal potential � for the mass Cow,

�u ¼ : ;;;;;;;;; : ;;;;;;;;; r̂�(r; �): ðA9Þ

The analogous Stokes stream function is �r sin � @��. Streamlines for this Cow are contours where such a function is constant.
Figure 3 shows the two cases of the meridional circulation where the Cow does or does not penetrate inside the shear region
(tachocline). Those proBles result from a simple power-law expression (Roberts & Stix 1972) for the radial part of the potential,

�(r) ¼
2

(1� rb)
6
(r � rb)

3(1� r)3; r > rb;

0; r < rb;

8<
: ðA10Þ

where rb ¼ 0:45 for the deep Cow case and rb ¼ 0:65 for the shallower case. We specify the latitudinal dependence to be
proportional to

P2;0( cos �) � 3 cos2�� 1; ðA11Þ

where Pl;m is the associated Legendre polynomial of order l ¼ 2 and degree m ¼ 0. This splits the domain into two counterrotating
cells, each poleward of the equator.
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